Journal of
Approximation
Theory

An asymptotic expansion for the error in a linear map that reproduces polynomials of a certain order

Carl de Boor
Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madison WI 53706, USA

Received 17 December 2003; accepted 16 February 2005
Communicated by Amos Ron
Available online 18 April 2005

Abstract

Han's 'multinode higher-order expansion' in $[\mathrm{H}]$ is shown to be a special case of an asymptotic error expansion available for any bounded linear map on $C([a . . b])$ that reproduces polynomials of a certain order. The key is the formula for the divided difference at a sequence containing just two distinct points.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Asymptotic error expansion; Polynomial reproduction; Divided difference

In $[\mathrm{H}]$, Han shows that, for linear maps on $C([a \ldots b])$ of the form $L: f \mapsto \sum_{i} \varphi_{i} f\left(x_{i}\right)$ that reproduce polynomials of degree $\leqslant m$, and for a specific choice of coefficients a_{j}, independent of L and f but depending on m and r, the following asymptotic error expansion

$$
f(x)=L f(x)+\sum_{j=0}^{r} \frac{a_{j}}{j!} L\left((x-\cdot)^{j} D^{j} f\right)(x)+E(f, x)
$$

holds, with $E(f, x)$ explicitly given as an integral involving $D^{m+r+1} f$. Since, for his particular choice of L, the sum involves the derivatives of f at the points or nodes x_{i} associated with L, Han thinks of this as a 'multinode' expansion for f.

[^0]It is the purpose of this note to point out that this asymptotic error expansion, properly interpreted, holds for any bounded linear map L on $C([a \ldots b])$, with the same formula for $E(f, x)$. The key is the formula for the divided difference at a sequence containing just two distinct points.

It is easy to verify, for example by induction on r and m, particularly for the special case $x=0, y=1$, that, for any $x \neq y$,

$$
\begin{aligned}
& (-1)^{m+1}(y-x)^{r+m+1} \Delta\left(x^{[r+1]}, y^{[m+1]}\right) \\
& \quad=\sum_{j=0}^{r}\binom{m+r-j}{r-j}(y-x)^{j} \Delta\left(x^{[j+1]}\right)-\sum_{k=0}^{m}\binom{r+m-k}{m-k}(x-y)^{k} \Delta\left(y^{[k+1]}\right),
\end{aligned}
$$

with $\Delta\left(x^{[r+1]}, y^{[m+1]}\right)$ denoting the divided difference at the point sequence that contains x exactly $r+1$ times and y exactly $m+1$ times.

The Peano kernel for the divided difference $\Delta\left(t_{0}, \ldots, t_{n}\right)$ at the sequence $\left(t_{0}, \ldots, t_{n}\right)$ is well-known to be the B-spline with knot sequence $\left(t_{0}, \ldots, t_{n}\right)$ that is normalized to integrate to $1 / n!$, hence (cf. (5) below), for arbitrary x and y,

$$
(y-x)^{r+m+1} \Delta\left(x^{[r+1]}, y^{[m+1]}\right) f=\int_{x}^{y} \llbracket t-x \rrbracket^{m} \llbracket y-t \rrbracket^{r} D^{r+m+1} f(t) \mathrm{d} t,
$$

with

$$
\llbracket s \rrbracket^{n}:=s^{n} / n!
$$

a handy notation for the normalized power.
Consequently, for any smooth f and any x and y, and using the fact that $\Delta\left(z^{[n+1]}\right) f=$ $D^{n} f(z) / n!$,

$$
\begin{align*}
- & \int_{x}^{y} \llbracket x-t \rrbracket^{m} \llbracket y-t \rrbracket^{r} D^{r+m+1} f(t) \mathrm{d} t \\
& =\sum_{j=0}^{r}\binom{m+r-j}{r-j} \llbracket y-x \rrbracket^{j} D^{j} f(x)-\sum_{k=0}^{m}\binom{r+m-k}{m-k} \llbracket x-y \rrbracket^{k} D^{k} f(y) . \tag{1}
\end{align*}
$$

If now L is any bounded linear map on $C([a, . b])$ that reproduces polynomials of degree $\leqslant m$, then, on applying $1-L$ to both sides of (1) as functions of x, we find, for arbitrary y, that

$$
\begin{align*}
& \int_{a}^{b}(1-L)\left(\llbracket(\cdot-t)_{+} \rrbracket^{m}\right)(x) \llbracket y-t \rrbracket^{r} D^{r+m+1} f(t) \mathrm{d} t \\
& \quad=\binom{m+r}{m}(f-L f)(x)+(1-L)\left(\sum_{j=1}^{r}\binom{m+r-j}{r-j} \llbracket y-\cdot \rrbracket^{j} D^{j} f\right)(x) \tag{2}
\end{align*}
$$

using the facts that (i) the second sum on the right of (1) is a polynomial of degree $\leqslant m$ in x, hence is annihilated by $1-L$; that (ii) for any (integrable) g and any $x, y \in[a \ldots b]$,

$$
-\int_{x}^{y} g(t) \mathrm{d} t=\int_{a}^{b}\left((x-t)_{+}^{0}-(y-t)_{+}^{0}\right) g(t) \mathrm{d} t
$$

(with z_{+}equal to z for positive z and 0 otherwise), hence

$$
\begin{aligned}
& -\int_{x}^{y} \llbracket x-t \rrbracket^{m} \llbracket y-t \rrbracket^{r} g(t) \mathrm{d} t \\
& \quad=\int_{a}^{b}\left(\llbracket(x-t)_{+} \rrbracket^{m} \llbracket y-t \rrbracket^{r}-\llbracket x-t \rrbracket^{m} \llbracket(y-t)_{+} \rrbracket^{r}\right) g(t) \mathrm{d} t
\end{aligned}
$$

while (iii) $\llbracket x-t \rrbracket^{m} \llbracket(y-t)_{+} \rrbracket^{r}$ is of degree $\leqslant m$ in x, hence annihilated by $1-L$. Now notice that $\llbracket y-x \rrbracket^{j}=0$ for $y=x$ and $j>0$. So, after setting $y=x$ in (2), we can (and will) replace $(1-L)$ on the right by $-L$, then divide both sides by $\binom{m+r}{m}$ and rearrange to arrive at the sought-for expansion

$$
\begin{equation*}
f(x)-L f(x)=\sum_{j=1}^{r} \frac{\binom{m+r-j}{r-j}}{\binom{m+r}{m}} L\left(\llbracket x-\cdot \rrbracket^{j} D^{j} f\right)(x)+E(f, x), \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
E(f, x):=\int_{a}^{b}(1-L)\left((\cdot-t)_{+}^{m}\right)(x)(x-t)^{r} D^{m+r+1} f(t) \mathrm{d} t /(m+r)! \tag{4}
\end{equation*}
$$

in which $\binom{m+r-j}{r-j} /\binom{m+r}{m}$ could be rewritten as $\frac{r!(m+r-j)!}{(m+r)!(r-j)!}$. Thus, when L takes the particular form $L f:=\sum_{i} \varphi_{i} f\left(x_{i}\right)$ for some functions φ_{i} and some points x_{i} in $[a \ldots b]$, we now have in hand Theorem 2 of [H].

As a check, for $L: f \mapsto f(a)$, hence $m=0$, we obtain

$$
f(x)-f(a)=\sum_{j=1}^{r} \llbracket x-a \rrbracket^{j} D^{j} f(a)+\int_{a}^{b}(x-t)_{+}^{r} D^{r+1} f(t) \mathrm{d} t / r!,
$$

i.e., the truncated Taylor series with integral remainder.

Consider now the error $E(f, x)$ in the asymptotic error expansion (3) for general L.
To be sure, (4) is correct offhand only for $m>0$. Even when $m=0$, it is correct in Han's context, i.e., when L is of the form $f \mapsto \sum_{i} \varphi_{i} f\left(x_{i}\right)$. For more general $L, t \mapsto$ $\left(L(\cdot-t)_{+}^{0}\right)(x)$ is not defined (since $L(\cdot-t)_{+}^{0}$ is not defined) and so must be interpreted properly, namely as the function $k(x, \cdot)$ of bounded variation that vanishes at b and represents the linear functional $\lambda: g \mapsto-\left(L \int_{a}^{a} g(t) \mathrm{d} t\right)(x)$ in the sense that $\lambda f=\int f \mathrm{~d} k(x, \cdot)$ for all $f \in C([a \ldots b])$, with the existence of such $k(x, \cdot)$ guaranteed by the Riesz Representation Theorem.

With that concern laid to rest, assume that $f \in C^{(r+m+1)}([a \ldots b])$ and that, for a given $x \in[a \ldots b]$,

$$
[a \ldots b] \rightarrow \mathbb{R}: t \mapsto(1-L)\left((\cdot-t)_{+}^{m}\right)(x)
$$

is of one sign (as it is, for any $x \in[a \ldots b]$, when $L f$ is the Bernstein polynomial for f, or the Lagrange polynomial interpolant). Then (see (4)) the Peano kernel for $E(\cdot, x)$ is of one sign on $[a \ldots x]$ and on $[x \ldots b]$. Correspondingly,

$$
\begin{array}{r}
E(f, x)=c_{1}(x) D^{m+r+1} f\left(\xi_{1}\right)+c_{2}(x) D^{m+r+1} f\left(\xi_{2}\right), \\
\text { some } \xi_{1} \in[a \ldots x], \xi_{2} \in[x \ldots b],
\end{array}
$$

with

$$
\begin{aligned}
& c_{1}(x):=E\left((-1)^{m+r+1} \llbracket(x-\cdot)_{+} \mathbb{\rrbracket}^{m+r+1}, x\right) \quad \text { and } \\
& c_{2}(x):=E\left(\mathbb{I}(\cdot-x)_{+} \mathbb{\rrbracket}^{m+r+1}, x\right)
\end{aligned}
$$

readily computable by retracing the steps that brought us to (3) but choosing, specifically, $f=(-1)^{m+r+1} \llbracket(x-\cdot)_{+} \rrbracket^{m+r+1}$, i.e., $D^{m+r+1} f=(x-\cdot)_{+}^{0}$, to get $c_{1}(x)$ and choosing $f=\llbracket(\cdot-x)_{+} \rrbracket^{m+r+1}$, i.e., $D^{m+r+1} f=(\cdot-x)_{+}^{0}$, to get $c_{2}(x)$. For this, we note that

$$
\begin{equation*}
-\int_{x}^{y} \llbracket x-t \rrbracket^{m} \llbracket y-t \rrbracket^{r} \mathrm{~d} t=(-1)^{m+1} \llbracket y-x \rrbracket^{m+r+1} \tag{5}
\end{equation*}
$$

for arbitrary x and y, hence, e.g.,

$$
-\int_{x}^{y} \llbracket x-t \rrbracket^{m} \llbracket y-t \rrbracket^{r}(x-t)_{+}^{0} \mathrm{~d} t=(-1)^{m+1}(x-y)_{+}^{0} \llbracket y-x \rrbracket^{m+r+1}
$$

Recalling that we obtained from this the corresponding error term by applying $1-L$ to it as a function of x, then setting $y=x$ and dividing by $\binom{m+r}{m}$, we get

$$
\begin{aligned}
c_{1}(x) & =(-1)^{m+1}(1-L)\left(\llbracket(x-\cdot)_{+} \mathbb{1}^{m+r+1}\right)(x) /\binom{m+r}{m} \\
& =(-1)^{m} L\left(\llbracket(x-\cdot)_{+} \mathbb{\rrbracket}^{m+r+1}\right)(x) /\binom{m+r}{m} .
\end{aligned}
$$

In the same way, we find that

$$
c_{2}(x)=(-1)^{m} L\left(\mathbb{I}(x-\cdot)_{-} \mathbb{1}^{m+r+1}\right)(x) /\binom{m+r}{m}
$$

If now r is even, then $c_{1}(x)$ and $c_{2}(x)$ are of the same sign and, in that case,

$$
E(f, x)=c(x) D^{m+r+1} f(\xi) \quad \text { some } \xi \in[a \ldots b]
$$

with

$$
c(x):=c_{1}(x)+c_{2}(x)=E\left(\mathbb{I} \cdot \mathbb{\rrbracket}^{m+r+1}, x\right)=(-1)^{m} L\left(\llbracket x-\cdot \rrbracket^{m+r+1}\right)(x) /\binom{m+r}{m} .
$$

Thus, when L takes the particular form $L f:=\sum_{i} \varphi_{i} f\left(x_{i}\right)$ for some functions φ_{i} and some points x_{i} in $[a \ldots b]$, we now have in hand Theorem 3 of $[\mathrm{H}]$.

References

[H] X. Han, Multinode higher order expansions of a function, J. Approx. Theory 124 (2) (2003) 242-253.

[^0]: E-mail address: deboor@cs.wisc.edu.

