
Journal of Approximation Theory 134 (2005) 171–174

www.elsevier.com/locate/jat

An asymptotic expansion for the error in a linear
map that reproduces polynomials of a certain order

Carl de Boor
Department of Computer Sciences, University of Wisconsin-Madison, 1210W. Dayton St., MadisonWI 53706,

USA

Received 17 December 2003; accepted 16 February 2005

Communicated by Amos Ron
Available online 18 April 2005

Abstract

Han’s ‘multinode higher-order expansion’ in [H] is shown to be a special case of an asymptotic
error expansion available for any bounded linear map onC([a..b]) that reproduces polynomials of
a certain order. The key is the formula for the divided difference at a sequence containing just two
distinct points.
© 2005 Elsevier Inc. All rights reserved.
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In [H], Han shows that, for linear maps onC([a . . b]) of the formL : f �→ ∑
i �if (xi)

that reproduce polynomials of degree�m, and for a specific choice of coefficientsaj ,
independent ofL andf but depending onmandr, the following asymptotic error expansion

f (x) = Lf (x) +
r∑

j=0

aj

j ! L
(
(x − ·)jDjf

)
(x) + E(f, x)

holds, withE(f, x) explicitly given as an integral involvingDm+r+1f . Since, for his par-
ticular choice ofL, the sum involves the derivatives off at the points or nodesxi associated
with L, Han thinks of this as a ‘multinode’ expansion forf.
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It is the purpose of this note to point out that this asymptotic error expansion, properly
interpreted, holds for any bounded linear mapL onC([a . . b]), with the same formula for
E(f, x). The key is the formula for the divided difference at a sequence containing just two
distinct points.
It is easy to verify, for example by induction onr andm, particularly for the special case

x = 0, y = 1, that, for anyx �= y,

(−1)m+1(y − x)r+m+1�(x[r+1], y[m+1])

=
r∑

j=0

(
m+r−j

r−j

)
(y − x)j �(x[j+1]) −

m∑
k=0

(
r+m−k
m−k

)
(x − y)k �(y[k+1]),

with �(x[r+1], y[m+1]) denoting the divided difference at the point sequence that contains
x exactlyr + 1 times andy exactlym + 1 times.
The Peano kernel for the divided difference�(t0, . . . , tn) at the sequence(t0, . . . , tn) is

well-known to be theB-splinewith knot sequence(t0, . . . , tn) that is normalized to integrate
to 1/n!, hence (cf. (5) below), for arbitraryx andy,

(y − x)r+m+1�(x[r+1], y[m+1])f =
∫ y

x

[[t − x]]m[[y − t]]rDr+m+1f (t) dt,

with

[[s]]n := sn/n!
a handy notation for the normalized power.
Consequently, for any smoothf and anyx andy, and using the fact that�(z[n+1])f =

Dnf (z)/n!,
−

∫ y

x

[[x − t]]m[[y − t]]r Dr+m+1f (t) dt

=
r∑

j=0

(
m+r−j

r−j

)[[y − x]]jDjf (x) −
m∑

k=0

(
r+m−k
m−k

)[[x − y]]kDkf (y). (1)

If now L is any bounded linear map onC([a . . b]) that reproduces polynomials of degree
�m, then, on applying 1− L to both sides of (1) as functions ofx, we find, for arbitraryy,
that ∫ b

a

(1− L)([[(· − t)+]]m)(x)[[y − t]]r Dr+m+1f (t) dt

= (
m+r
m

)
(f − Lf )(x) + (1− L)


 r∑

j=1

(
m+r−j

r−j

)[[y − ·]]jDjf


 (x), (2)

using the facts that (i) the second sum on the right of (1) is a polynomial of degree�m in
x, hence is annihilated by 1− L; that (ii) for any (integrable)g and anyx, y ∈ [a . . b],

−
∫ y

x

g(t) dt =
∫ b

a

((x − t)0+ − (y − t)0+)g(t) dt
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(with z+ equal toz for positivezand 0 otherwise), hence

−
∫ y

x

[[x − t]]m[[y − t]]rg(t) dt

=
∫ b

a

([[(x − t)+]]m[[y − t]]r − [[x − t]]m[[(y − t)+]]r) g(t) dt,

while (iii) [[x − t]]m[[(y − t)+]]r is of degree�m in x, hence annihilated by 1− L. Now
notice that[[y − x]]j = 0 for y = x andj > 0. So, after settingy = x in (2), we can (and
will) replace(1− L) on the right by−L, then divide both sides by

(
m+r
m

)
and rearrange to

arrive at the sought-for expansion

f (x) − Lf (x) =
r∑

j=1

(
m+r−j

r−j

)
(
m+r
m

) L
(
[[x − ·]]jDjf

)
(x) + E(f, x), (3)

with

E(f, x) :=
∫ b

a

(1− L)
(
(· − t)m+

)
(x) (x − t)rDm+r+1f (t) dt/(m + r)!, (4)

inwhich
(
m+r−j

r−j

)
/
(
m+r
m

)
could be rewrittenasr!(m+r−j)!

(m+r)!(r−j)! . Thus,whenL takes theparticular
formLf := ∑

i �if (xi) for some functions�i and some pointsxi in [a . . b], we now have
in hand Theorem 2 of[H].
As a check, forL : f �→ f (a), hencem = 0, we obtain

f (x) − f (a) =
r∑

j=1

[[x − a]]jDjf (a) +
∫ b

a

(x − t)r+Dr+1f (t) dt/r!,

i.e., the truncated Taylor series with integral remainder.
Consider now the errorE(f, x) in the asymptotic error expansion (3) for generalL.
To be sure, (4) is correct offhand only form > 0. Even whenm = 0, it is correct in

Han’s context, i.e., whenL is of the formf �→ ∑
i �if (xi). For more generalL, t �→

(L(· − t)0+)(x) is not defined (sinceL(· − t)0+ is not defined) and so must be interpreted
properly, namelyas the functionk(x, ·)of boundedvariation that vanishesatband represents
the linear functional� : g �→ −(L

∫ ·
a
g(t) dt)(x) in the sense that�f = ∫

f dk(x, ·) for all
f ∈ C([a . . b]), with the existence of suchk(x, ·) guaranteed by the Riesz Representation
Theorem.
With that concern laid to rest, assume thatf ∈ C(r+m+1)([a . . b]) and that, for a given

x ∈ [a . . b],
[a . . b] → R : t �→ (1− L)

(
(· − t)m+

)
(x)

is of one sign (as it is, for anyx ∈ [a . . b], whenLf is the Bernstein polynomial forf, or
the Lagrange polynomial interpolant). Then (see (4)) the Peano kernel forE(·, x) is of one
sign on[a . . x] and on[x . . b]. Correspondingly,

E(f, x) = c1(x)Dm+r+1f (�1) + c2(x)Dm+r+1f (�2),
some�1 ∈ [a . . x], �2 ∈ [x . . b],
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with

c1(x) := E((−1)m+r+1[[(x − ·)+]]m+r+1, x) and

c2(x) := E([[(· − x)+]]m+r+1, x)

readily computable by retracing the steps that brought us to (3) but choosing, specifically,
f = (−1)m+r+1[[(x − ·)+]]m+r+1, i.e.,Dm+r+1f = (x − ·)0+, to get c1(x) and choosing
f = [[(· − x)+]]m+r+1, i.e.,Dm+r+1f = (· − x)0+, to get c2(x). For this, we note that

−
∫ y

x

[[x − t]]m[[y − t]]r dt = (−1)m+1[[y − x]]m+r+1, (5)

for arbitraryx andy, hence, e.g.,

−
∫ y

x

[[x − t]]m[[y − t]]r (x − t)0+ dt = (−1)m+1(x − y)0+[[y − x]]m+r+1.

Recalling that we obtained from this the corresponding error term by applying 1− L to it
as a function ofx, then settingy = x and dividing by

(
m+r
m

)
, we get

c1(x) = (−1)m+1(1− L)([[(x − ·)+]]m+r+1)(x)/
(
m+r
m

)
= (−1)mL([[(x − ·)+]]m+r+1)(x)/

(
m+r
m

)
.

In the same way, we find that

c2(x) = (−1)mL([[(x − ·)−]]m+r+1)(x)/
(
m+r
m

)
.

If now r is even, thenc1(x) andc2(x) are of the same sign and, in that case,

E(f, x) = c(x)Dm+r+1f (�) some� ∈ [a . . b],
with

c(x) := c1(x) + c2(x) = E([[ · ]]m+r+1, x) = (−1)mL([[x − ·]]m+r+1)(x)/
(
m+r
m

)
.

Thus, whenL takes the particular formLf := ∑
i �if (xi) for some functions�i and some

pointsxi in [a . . b], we now have in hand Theorem 3 of[H].
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