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Abstract

Han’s ‘multinode higher-order expansion’ in [H] is shown to be a special case of an asymptotic
error expansion available for any bounded linear ma@dua..b]) that reproduces polynomials of
a certain order. The key is the formula for the divided difference at a sequence containing just two
distinct points.
© 2005 Elsevier Inc. All rights reserved.
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In [H], Han shows that, for linear maps @f([a . . b]) of the formL : f — Y, @; f(x;)
that reproduce polynomials of degreem, and for a specific choice of coefficients,
independent of andf but depending omandr, the following asymptotic error expansion

F) = LF@ + 30 L (=)D F) @)+ E G0
Jj=0 "

holds, withE ( f, x) explicitly given as an integral involving”*"*1 f. Since, for his par-
ticular choice oL, the sum involves the derivativesfadt the points or nodes associated
with L, Han thinks of this as a ‘multinode’ expansion for
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It is the purpose of this note to point out that this asymptotic error expansion, properly
interpreted, holds for any bounded linear miapn C([a . . b]), with the same formula for
E(f, x). The key is the formula for the divided difference at a sequence containing just two
distinct points.

It is easy to verify, for example by induction orandm, particularly for the special case
x =0,y =1, that, for anyx # v,

m
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k=0

with As(x[“rl , y+11) denoting the divided difference at the point sequence that contains
x exactlyr + 1 times andy exactlym + 1 times.

The Peano kernel for the divided differendéro, . . ., t,) at the sequencey, . . ., t,) is
well-known to be the B-spline with knot sequenigg . . ., t,) thatis normalized to integrate
to 1/n!, hence (cf. (5) below), for arbitraryandy,

s
(v — x) T Ay Iy e f [t —x1"[y — (1" D" "L f (o) d,
with

[sT" :=s"/n!

a handy notation for the normalized power.
Consequently, for any smooftand anyx andy, and using the fact thak(z!" 1) f =

D" f(z)/n,
— / ' [x — 1"y — ¢I” D" f (o) e

m
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If now L is any bounded linear map @f([« . . b]) that reproduces polynomials of degree
<m, then, on applying + L to both sides of (1) as functions xfwe find, for arbitraryy,
that

b
/ (L= LY = DT Oy — (I D Lf (1) di

r
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using the facts that (i) the second sum on the right of (1) is a polynomial of degrem
X, hence is annihilated by L; that (ii) for any (integrabley and anyx, y € [a .. b],

y b
—~ / g(t)dr = / (x =03 =y —nD)g(r) dr



C. de Boor / Journal of Approximation Theory 134 (2005) 171-174 173

(with z4 equal toz for positivezand 0 otherwise), hence

’
—/ [x — 1" [y —t1"g () dt

b
_ / (G — D41y — 11 — [x — A" — D417 () .

while (i) [x — " [[(y — #)+]" is of degree<m in X, hence annihilated by 4 L. Now
notice thaf[y — x]/ = 0 for y = x andj > 0. So, after setting = x in (2), we can (and
will) replace(1 — L) on the right by—L, then divide both sides b@’;’) and rearrange to
arrive at the sought-for expansion

ro(mrd o
FO)—LfG) =3 %L (L = WD/ f) ) + Ef00, 3)
j=1 \m
with
b
E(f,x) = / A= L) (¢ =0%) @)« =0 D" @) de/ om + 1)1, )

inwhich (" "7) /(" ") could be rewritten aﬁ% Thus, whet takes the particular
formLf :=3"; ¢; f(x;) for some functiong; and some points; in [a .. b], we now have
in hand Theorem 2 dH].

As acheck, folL : f — f(a), hencen = 0, we obtain

r

b
0= @ =Y lx—al Dl f@+ [ -0 g

j=1

i.e., the truncated Taylor series with integral remainder.

Consider now the errak (£, x) in the asymptotic error expansion (3) for genéral

To be sure, (4) is correct offhand only far > 0. Even whenn = 0, it is correct in
Han's context, i.e., wheh is of the form f — Y, ¢, f(x;). For more generdl, ¢
(L(- — t)g_)(x) is not defined (sincé. (- — t)g_ is not defined) and so must be interpreted
properly, namely as the functidiix, -) of bounded variation that vanishedand represents
the linear functionalk : g — —(L [, g(r) dr)(x) in the sense thatf = [ f dk(x, -) for all
f € C(la..b]), with the existence of sudh(x, -) guaranteed by the Riesz Representation
Theorem.

With that concern laid to rest, assume thfag C”+"+1([a .. b]) and that, for a given
x € la..b],

[a..b] = Rite> 1—L)(( =)&)

is of one sign (as it is, for any € [a .. b], whenLf is the Bernstein polynomial fdt or
the Lagrange polynomial interpolant). Then (see (4)) the Peano kerngél{ far) is of one
sign onfa .. x] and on[x .. b]. Correspondingly,

E(f,x) = c1(x) D" F(E) + co(x) DT (&),
someéq € fa..x], & e[x..b],
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with
c1(x) i= E((=1" 7 (x — 41"+ x)  and
c2(x) i= E([(- — x) 11" x)

readily computable by retracing the steps that brought us to (3) but choosing, specifically,
f=Dmr e — )1 ie, DL = (x — )9, to get a(x) and choosing
F=0¢—x)41"" e, D+l f = (- — )0, to get o(x). For this, we note that

y
a / [x — ™[y — 17 dr = (=" Ly — X"+, (5)

for arbitraryx andy, hence, e.g.,
y
[ -y - = 0 b = -1 %y -

Recalling that we obtained from this the corresponding error term by applying. 1o it
as a function ok, then settings = x and dividing by(’"”), we get

c1(x) = (D" A= L) = )4 1"/ ()
= (=1L — 1" e /().

In the same way, we find that

c2(x) = (=" LI (x = )-1" )/ ("),
If now r is even, ther;(x) andc2(x) are of the same sign and, in that case,

E(f.x) = c(x)D"" 1 f(&) somel e a..b],

with
c(x) i= e1(x) + c2(x) = E([- 1" %) = (1" L(lx — 1"+ H /().

Thus, wherl takes the particular formf := ), ¢, f (x;) for some functions; and some
pointsx; in [a .. b], we now have in hand Theorem 3[#f].
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